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Abstract

A General Ensemble Learning Framework for Online and Offline Machine Learning

by

Cheng Ju

Master of Arts in Biostatistics

University of California, Berkeley

Professor Mark van der Laan, Chair

Ensemble learning methods train several baseline models, and use some techniques to
combine them together to make prediction. The ensemble learning methods have gained
popularity because their superior prediction performance. The optimal learner for prediction
varies greatly depending on the underlying data-generating distribution. To select the best
algorithm for a given set of data we must therefore use cross-validation to compare several
candidate algorithms. Super learner (SL) is an ensemble learning algorithm that utilizes
the strength of individual methods by building, training, and selecting among a ”library” of
candidate algorithms. It can easily be adapted to different data sets by utilizing a diverse
library of algorithms.

We first study the offline Super Learner in the setting of propensity score prediction.
Propensity scores are used to reduce the bias of causal effect estimators introduced in ob-
servational studies by the nonrandom assignment of treatment. The propensity score is the
estimated probability of treatment assignment, conditional on baseline covariates; generating
propensity scores can be seen as a classic prediction problem. Parametric models like lo-
gistic regression and machine learning algorithms including decision trees, neural networks,
and support vector machines can all be used for propensity score prediction. The High-
dimensional Propensity Score Adjustment (hdPS) developed by Schneeweiss et al. is one
parametric algorithm that employs a nonparametric variable selection method to enhance
the prediction precision. We compare and combine Super learner and the High-dimensional
Propensity Score Adjustment algorithm to predict propensity scores. Prediction performance
is assessed across three datasets using three metrics: likelihood, area under the curve, and
time complexity. The results show: 1. Without overfitting, hdPS often outperforms other
algorithms that only use baseline variables. 2. The best individual algorithm is highly de-
pendent on the data set. An ensemble data-adaptive method like SL is necessary to reliably
generate the best estimation. 3. SL which utilizes the hdPS methodology outperforms all
other algorithms considered in this study. 4. Moreover, in our study, the results show the re-
liability of SL: Even though we used likelihood to train the Super Learners, SL still performs
best with respect to area under the curve (AUC) in all three data sets.
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Then we study the Super Learner in the online setting. Consider an online classification
problem. The incoming data stream could be heterogeneous, and even adversarial, e.g. email
spamming. We have m base learner/experts which estimate the probability for the incoming
data. We want to find a convex combination of the base learners. We use the logistic loss as
the surrogate convex loss. This could be treated as an online convex optimization problem.
First we show this could be solved by mirror descent, which could achieve O(

√
n) regret

under a mild assumption. Then we show the loss function is α-log-concave and adapt the
online Newton steps by Hazan et al to solve the online Super Learner with logarithm regret.
To achieve better practical performance, we also study the deeper non-linear Super Learner,
which ensembles the predictors in the logit scale. The performance of the online Super
Learner are compared to other ensemble methods (e.g. online bagging) on the simulations
and real data sets.
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Chapter 1

Prediction of propensity score using
Super Learner and High-dimensional
Propensity Score Adjustment

Introduction

The propensity score is the conditional probability of assignment to a particular treatment
given a vector of observed covariates. Both large and small sample size theories show that
adjustment for the scalar propensity score is sufficient to remove the bias of average treat-
ment effect due to baseline confounders [30]. Therefore estimating the propensity score is
a significant step toward efficiently estimating a causal effect. In this article, we aim to
compare several powerful algorithms for the estimation of propensity scores.

We focus on developing a single best model to predict propensity scores for binary treat-
ments. One traditional approach to this estimation problem is to use logistic regression [6].
Many modern statistical and machine learning methods can also be used for this problem
including classification tree, boosting, and random forest [16]. To predict a binary outcome
given a set of covariates, one has many estimation procedures in their toolbox; however,
every model has its own bias-variance trade off and various tuning parameters to consider.
Therefore, one method may be better than others within a particular data set, while fail with
different data sets. It is challenging to figure out the best single model for this particular
problem.

Super Learner is a general loss-based learning method that has been proposed and an-
alyzed theoretically in van der Laan et al [21]. It is an ensemble learning algorithm which
creates a weighted combination of many candidate learners to build the optimal estimator.
In the present study we used the negative log likelihood loss function to inform the algo-
rithm selection. V-fold cross-validation is used to compare performance of the library of
candidate estimators. For each candidate algorithm, SL averages the estimated risks across
the validation sets, resulting in the so-called cross-validated risk. Cross-validated risk esti-
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mates are used to choose the weighted linear convex combination of the candidate learners
with the smallest estimated risk [24]. It has been demonstrated [38, 8, 37] that this convex
combination performs asymptotically at least as well as the best choice among the library of
candidate algorithms if the library does not contain a correctly specified parametric model;
Otherwise, it achieves the same rate of convergence as the correctly specified parametric
model.

The High-dimensional propensity score algorithm (hdPS) was proposed to automate con-
founding adjustment for problems involving large healthcare databases. In this setting expert
selection of confounders by hand is not practical because of the high dimensionality and spar-
sity of these databases [33]. Claims data contain information about patient health status.
These sparse covariates are often only significant when combined with other covariates. hdPS
is a simple and powerful algorithm to explore the utility of this additional information, and
previous articles demonstrate hdPS effectively handles baseline confounding through match-
ing and covariance adjustment [29, 36, 28].

In the present study, we compared several statistical and machine learning classifica-
tion algorithms, the High-dimensional propensity score algorithm, and Super Learners with
different libraries on three datasets. Performances of algorithms are assessed by time com-
plexity, negative log-likelihood and AUC (Area Under Curve). In this study, we focus on
the estimation of the propensity score (the probability of exposure), and omit consideration
of the outcome variable, except when using hdPS (see details in Methods section).

Data Sources and Study Cohorts

We used three data sets to assess the performance of the models: the Novel Oral Anticoagu-
lant Prescribing (NOAC) data set, the Nonsteroidal anti-inflammatory drugs (NSAID) data
set and the Vytorin data set. For each data set, we had two kinds of covariates: baseline co-
variates and claims code covariates. Baseline covariates include demographic (e.g. age, sex,
census region and race) and some predefined covariates that are selected by context knowl-
edge. Claims code covariates were collected from extremely high-dimensional and sparse
healthcare databases.

Novel Oral Anticoagulant (NOAC) data set

The NOAC data set was generated to track a cohort of new users of oral anticoagulants
for use in a study of the comparative safety and effectiveness of these agents. The data
was collected by United Healthcare, recorded between October, 2009 and December, 2012.
The dataset includes 18,447 observations, 60 baseline covariates and 23,531 claims code
covariates.

Each claims code covariate records the number of times a claims code occurred for each
patient. The claims code covariates fall into four categories, or ”dimensions”: inpatient
diagnoses, outpatient diagnoses, inpatient procedures and outpatient procedures.
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for example, if a patient has a value of 2 for the variable ”pxop V5260”, then the pa-
tient received the outpatient procedure coded as V5260 twice between October, 2009 and
December, 2012.

NSAID data set

The NSAID data set tracks the binary exposure to a selective COX-2 inhibitor or a compar-
ison drug, a nonselective NSAID. The observations are drawn from a population of patients
aged 65 years and older enrolled in both Medicare and the Pennsylvania Pharmaceutical
Assistance Contract for the Elderly (PACE) programs between 1995 and 2002. There are
49,653 observations, with 22 baseline covariates and 9,470 claims code covariates in this
study.

Each claims code covariate records the number of times a claims code occurred for each
patient. The claims code covariates fall into eight dimensions: prescription drugs, ambula-
tory diagnoses, hospital diagnoses, nursing home diagnoses, ambulatory procedures, hospital
procedures, doctor diagnoses and doctor procedures.

Vytorin data set

This data set was generated to track a cohort of new users of Vytorin and high-intensity
statin therapies. The observation is all United Healthcare patients linked for January 1,
2003 December 31, 2012, with age over 65 on day of entry into cohort.

The binary exposure variable tracks use of Vytorin or high-intensity statins. The dataset
includes 148,327 observations, 67 baseline covariates and 15,010 code covariates.

Each claims code covariate records the number of times a claims code occurred for each
patient. The claims code covariates fall into five dimensions: ambulatory diagnoses, ambu-
latory procedures, prescription drugs, hospital diagnoses and hospital procedures.

Methods

In this paper, we used R (version 3.2.2) for the data analysis. For each dataset, we randomly
selected 80% of the data as the training set and the rest as the testing set. We centered
and scaled each of the covariates. We used cross-validation on only the training set to select
tuning parameter values for the relevant algorithms, and assessed the goodness of fit of all
the models on only the testing set to ensure objective measures of prediction reliability.

High-dimensional propensity score (hdPS) algorithm

We followed the five steps in the hdPS screening method to generate the hdPS covariates:

1. Specifying Data Resource First, we clustered the data by their resources, or dimen-
sions, e.g. diagnoses, procedures, and medications. See dataset specific details above.
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2. Identifying Candidate Empirical Covariates Second, we empirically identified can-
didate covariates in each dimension. Within each data dimension we identified the n most
prevalent covariates. Here we defined prevalence as the minimum of Pr and 1−Pr, where
Pr is the proportion of non-zero values for a given covariate.

3. Assessing Recurrence of Code For each selected covariate, e.g. X, we defined three
dummy covariates to indicate if that code appeared at least once, at least more than
the median, and at least more than the 75th percentile. Then we kept only the dummy
covariates.

4. Prioritizing Covariates For each covariate, we computed the potential amount of
confounding the variable could adjust for. In a multiplicative model with binary exposure
and outcome, a standard measure of confounding adjustment is BiasM :

BiasM =
PC1(RRCD − 1) + 1

PC0(RRCD − 1) + 1
, If RRCD > 1

BiasM =
PC1( 1

RRCD
− 1) + 1

PC0( 1
RRCD

− 1) + 1
, If RRCD < 1

Details can be found in [33]. Here PC1 = P (C = 1|A = 1), PC0 = P (C = 0|A = 1),

RRCD = P (Y=1|C=1)
P (Y=1|C=0)

5. Selecting Covariates for Adjustment We select the top k empirical covariates from
step 4.

After this five step data screening process the hdPS algorithm estimates the exposure
propensity score using multivariate logistic regression, including the k screened hdPS co-
variates, d demographic covariates and l predefined covariates that were selected by context
knowledge. The tuning parameters of this algorithm are the number of claims codes per
dimension defined in step 1, n, and the number of screened hdPS covariates in total, k.

For clarification, we call the whole procedure, including screening and estimation the
hdPS algorithm, and the screening steps the hdPS screening method.

Machine Learning Algorithm Library

There are many different machine learning algorithms in R with varying syntax for model
training and/or prediction across packages. The caret package (version 6.0-37) [20] offers
wrapper functions that standardized input and output formatting. In this paper, we made a
wrapper function to access the machine learning algorithms in the caret package and used
the caret wrapper functions to build the Super Learner libraries.

For each individual algorithm, we used leave group out (LGO) cross-validation to select
the tuning parameters. We randomly selected 90% of the training data for model training
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and 10% of the training data for model tuning and selection. For clarity, we refer to these
subsets of the training data as the LGO training set and the LGO validation set, respectively.
After the tuning parameters are selected, we fit the selected models on the whole training
set, and assess the models on the testing set.

We use 23 statistical/machine learning algorithms in the caret package: Bayesian Gener-
alized Linear Model (”bayesglm”), C5.0 (”C5.0”), Single C5.0 Ruleset (”C5.0Rules”), Single
C5.0 Tree (”C5.0Tree”), Conditional Inference Tree (”ctree2”), Multivariate Adaptive Re-
gression Spline (”earth”), Boosted Generalized Linear Model (”glmboost”), Penalized Dis-
criminant Analysis (”pda”), Shrinkage Discriminant Analysis (”sda”), Flexible Discriminant
Analysis (”fda”), Lasso and Elastic-Net Regularized Generalized Linear Models (”glmnet”),
Penalized Discriminant Analysis (”pda2”), Stepwise Diagonal Linear Discriminant Analy-
sis (”sddaLDA”), Stochastic Gradient Boosting (”gbm”), Multivariate Adaptive Regression
Splines (”gcvEarth”), Boosted Logistic Regression (”LogitBoost”), Penalized Multinomial
Regression (”multinom”), Penalized Logistic Regression (”plr”), CART (”rpart”), Step-
wise Diagonal Quadratic Discriminant Analysis (”sddaQDA”), Generalized Linear Model
(”glm”), Nearest Shrunken Centroids (”pam)”, and Cost-Sensitive CART (”rpartCost”)

Super Learner

Super Learner (SL) is a method for selecting an optimal algorithm from a set of candidates
using cross-validation. The selection strategy relies on the choice of a loss function (negative
log likelihood in the present study) and the choice of a library of candidate algorithms.
Comparison of candidate algorithns within a library uses V-fold cross-validation: for each
candidate algorithm, SL averages the estimated risks across the validation sets, resulting
in the so-called cross-validated risk. Cross-validated risk estimates are used to choose the
weighted linear convex combination of the candidate learners with the smallest estimated
risk. This convex combination, applied to algorithms run using all of the learning data, is
referred to as the SL estimator [21, 26].

We used the Super Learner package in R (Version: 2.0-15) in this study to compare three
Super Learner estimators:

SL1 Included only baseline variables with all 23 of the previously identified traditional
machine learning algorithms in the SL library.

SL2 Identical to SL1, but with the addition of the hdPS algorithm in its SL library. Note
that only the hdPS algorithm had access to the claims code variables in SL2.

SL3 Identical to SL1, but with the addition of claims code covariates selected by the
hdPS screening method. Based on the performance of single hdPS algorithms, a fixed
pair of hdPS tuning parameters is selected, and SL3 finds the optimal ensemble of all the
algorithm candidates fitted on the same baseline and hdPS covariates.
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Super
Learner

Libray Covariates

SL1 All machine learning algorithms Only baseline covariates.
SL2 All machine learning algorithms

and the hdPS algorithm
Baseline covariates; Only the hdPS algo-
rithm can use code data.

SL3 All machine learning algorithms Baseline covariates and hdPS covariates gen-
erated from code data by hdPS screening
method.

Table 1.1: Details of the three Super Learners considered.

Performance Metrics

Unlike the causal effect, which is hard to validate, the performance of a prediction model
can be validated by the performance on new data. We used three criteria to evaluate our
algorithms: computing time, negative log-likelihood, and area under the curve (AUC). In
statistics, a receiver operating characteristic (ROC), or ROC curve, is a plot that illustrates
the performance of a binary classifier system as its discrimination threshold is varied. The
curve is created by plotting the true positive rate against the false positive rate at various
threshold settings. The AUC is then computed as the area under the ROC curve.

For both computation time and negative log-likelihood, smaller values indicate better
performance, whereas for AUC the better classifier achieves greater values [15]. Compared to
the error rate, the AUC is a better assesment of performance for the unbalanced classification
problem.
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Results

Using the hdPS prediction algorithm with Super Learner

Computation Times
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Figure 1.1: Running times for individual machine learning and hdPS algorithms without
SuperLearner. The y-axis is in log scale.

Figure 1.1 shows the running time for the 23 individual machine learning algorithms and
the hdPS algorithm across all three datase without the use of Super Learner. Running
time is measured in seconds. Figure 1.1a shows the running time for the machine learning
algorithms that only use baseline covariates. Figure 1.1b shows the running time for the
hdPS algorithm at varying values of the tuning parameters k and n. The running time
is sensitive to n, the number of selected covariates in step 2, while less sensitive to k, the
total number of covariates generated by hdPS screening (see details in hdPS section). This
suggests most of the running time for hdPS is spent generating and screening covariates.
The running time for the hdPS algorithm is generally around the median of all the running
time of the machine learning algorithms with only baseline covariates.

The running time of SL is not placed in the figures. Super Learner with baseline covariates
takes just over twice as long as the sum of the running time for each individual algorithms
in its library: SL splits data into training and validation set, fits on the training set, finds
weights based the on the validation set, and finally retrains the model on the whole set. In
other words, Super Learner will fits every single algorithm twice. Therefore, the running
time will be about twice the sum of its constituent algorithms, which is what we see in this
study (See Table 1.2).
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Data Set Algorithm
Processing Time

(seconds)
NOAC Sum of machine learning algorithms 481.13

Sum of hdPS algorithms 222.87
Super Learner 1 1035.43
Super Learner 2 1636.48

NSAID Sum of machine learning algorithms 476.09
Sum of hdPS algorithms 477.32

Super Learner 1 1101.84
Super Learner 2 2075.05

VYTORIN Sum of machine learning algorithms 3982.03
Sum of hdPS algorithms 1398.01

Super Learner 1 9165.93
Super Learner 2 15743.89

Table 1.2: Running time of the machine learning algorithms, the hdPS algorithms, and Super
Learners 1 and 2. Twice the sum of the running time of the machine learning algorithms
is comparable to the running time of Super Learner 1 and twice the sum of the running
times of both the machine learning algorithms and the hdPS algorithms is comparable to
the running time of Super Learner 2.

Super Learner 2 (with a library of all machine learning algorithms and hdPS) takes a bit
more than expected. The small extra time is possibly due to SL generating hdps covariates
on the validation set based on the fitted hdPS algorithm, which takes a long time if the size
of the data is large.
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Negative log-likelihood
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Figure 1.2: The negative log-likelihood for SL1, SL2, the hdPS algorithm, and the 23 machine
learning algorithms.

Figure 1.2a shows the negative log-likelihood for Super Learners 1 and 2, and each of the 23
machine learning algorithms (with only baseline covariates) . Figure 1.2b shows the negative
log-likelihood for hdPS algorithms with varying tuning parameters, n and k.

The performance of hdPS is not sensitive to either n or k. hdPS outperforms most
individual algorithms in the library in most cases, as it takes advantage of the extra in-
formation from code data. However, in the Vytorin data set, there are still some machine
learning algorithms which perform slightly better than hdPS with respect to the negative
log-likelihood.

We can see the SL (without hdPS) outperforms all the other individual algorithms,
empirically verifing the optimal property proved by previous literatures [21, 26]: the Super
Learner can do at least as well as the best algorithm in the library. The figures show that
including the hdPS algorithm improves the performance of Super Learner. With the help
of hdPS, Super Learner achieves the best performance among all the algorithms (including
hdPS itself). This suggests the time consumption is worthwhile for Super Learner.



CHAPTER 1. PREDICTION OF PROPENSITY SCORE USING SUPER LEARNER
AND HIGH-DIMENSIONAL PROPENSITY SCORE ADJUSTMENT 10

AUC

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●●

●

●●

●
●●

●●
●
●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●
●

●

●

●

●●●

●

●●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●●

●

●
●●●●●

●
●

0.5

0.6

0.7

0.8

0.9

noac_bleed nsaid vytorin_combined
data set

A
re

a 
U

nd
er

 C
ur

ve

meta_method
●

●

●

●

hdps
single algorithm
sl_baseline(SL1)
sl_hdps(SL2)

(a) AUC of SL1, SL2, the hdPS algo-
rithm, and the 23 machine learnng al-
gorithms.

●
●●

●●
●
●

●

●●●●●
●

●

●
●●●●●

0.5

0.6

0.7

0.8

0.9

noac_bleed nsaid vytorin_combined
data set

A
re

a 
U

nd
er

 C
ur

ve method
●

●

●

●

●

●

●

k=100, n=200
k=1000, n=500
k=200, n=200
k=350, n=200
k=50, n=200
k=500, n=200
k=750, n=500

(b) AUC for the hdPS algorithm, vary-
ing the parameter k from 50 to 750 for
n = 200, and n = 500.

Figure 1.3: The area under the ROC curve (AUC) for for Super Learners 1 and 2, the hdPS
algorithm, and each of the 23 machine learning algorithms.

SL uses loss-based cross-validation to select the optimal combination of individual algorithms,
so it is not surprising that it outperforms other algorithms with respect to the negative log-
likelihood. As propensity score estimation can be considered a binary classification problem,
we can use the Area Under the Curve (AUC) to compare performance across algorithms.
Binary classification is typically determined by setting a threshold. As the threshold varies
for a given classifier we can achieve different true positive rates (TPR) and false positive
rates (FPR). A Receiver Operator Curve (ROC) space is defined by FPR and TPR as the
x- and y-axes respectively, to depict the trade-off between true positives (benefits) and false
positives (costs) at various classification thresholds. We then draw the ROC curve of TPR
and FPR for each model and calculate the AUC. The upper bound for a perfect classifier is
1 while a naive random guess would achieve about 0.5.

In Figure 1.3a, we compare the performance of Super Learners 1 and 2, the hdPS algo-
rithm, and each of the 23 machine learning algorithms. Although we optimized the Super
Learners with respect to the negative log-likelihood loss function, SL1 and SL2 have out-
standing performance with respect to the AUC; Over the NOAC and NSAID data set, SL1
(with only baseline variables) achieves the best AUC compared to all machine learning al-
gorithms in its library, with only a slightly weaker AUC performance than hdPS. In the
VYTORIN data set, SL1 outperforms hdPS algorithms with respect to AUC, even though
the hdPS algorithms use the additional claims data.

Super Learner 2 clearly combines the strength of the hdPS algorithm and all the machine
learning algorithms in its library. Table 1.3 shows, in all three data sets, it achieves higher
AUC over all the other algorithms, including hdPS and SL1.
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data SL1 SL2 best hdPS (parameter k/n)
noac 0.7652 0.8203 0.8179 (500/200)
nsaid 0.6651 0.6967 0.6948 (500/200)
vytorin 0.6931 0.6970 0.6527 (750/500)

Table 1.3: Comparison of AUC for SL1, SL2 and best hdPS across three data sets

Using the hdPS screening method with Super Learner

In the previous sections, we compared machine learning algorithms limited to only baseline
covariates with the hdPS algorithms across different parameters (negative log-likelihood
and AUC). The results show that including the hdPS algorithm in a Super Learner library
increases performance significantly. In this section, we combine the strength of the claims
code data via the hdPS screening method with the machine learning algorithms to improve
the propensity score estimation.

We first used the hdPS screening method (with tuning parameters n = 200, k = 500)
to generate and screen the hdPS covariates. Then we combined these hdPS covariates with
the baseline covariates to generate augmented datasets for each of the three datasets under
consideration. We build a Super Learner library which included each of the 23 individual
machine learning algorithms. Note that, as the original hdPS method uses logistic regression
for prediction, it can be considered a special case of LASSO (with λ = 0).
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Figure 1.4: Negative log-likelihood and AUC of SL1, SL2, and SL3, compared with each
of the single machine learning algorithms (with and without using hdPS covariates). We
could see among all the single algorithms and Super Learners, SL3 performs best cross three
datasets

For convenience, we differentiate Super Learners 1, 2 and 3 by their algorithm libraries:
machine learning algorithms with only baseline covariates, augmenting this library with
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hdPS, and only the machine learning algorithms but with both baseline and hdPS screened
covariates. (See Table 1.1).

Figures 1.4 compares the negative log-likelihood and AUC, respectively, of all three Super
Learners and machine learning algorithms. It is clear that the performance of all algorithms
increases significantly by including the hdPS screened code covariates. SL3 is slightly better
than SL2, and the difference is very small.

Data set Performance Metric Super Learner 1 Super Learner2 Super Learner 3
NOAC 0.7652 0.8203 0.8304
NSAID AUC 0.6651 0.6967 0.6975

VYTORIN 0.6931 0.6970 0.6980
NOAC 0.5251 0.4808 0.4641
NSAID Negative Log-likelihood 0.6099 0.5939 0.5924

VYTORIN 0.4191 0.4180 0.4171

Table 1.4: Performance as measured by AUC and negative log-likelihood for the three Super
Learners with the following libraries: machine learning algorithms with only baseline covari-
ates, augmenting this library with hdPS, and only the machine learning algorithms but with
both baseline and hdPS screened covariates. (See Table 1.1).

In table 1.4, we can again see the trend that performance improves from Super Learner 1
to 2 and from 2 to 3. The differences in AUC and in negative log-likelihood between SL1 and
2 are large, while these differences between SL2 and 3 are small. This suggests two things:
First, the prediction step in the hdPS algorithm (logistic regression) works well: it performs
approximately as well as the best individual machine learning algorithm in the library for
Super Learner 3. Second, the hdPS screened covariates make the propensity score estimation
more flexible; using SuperLearner we can easily develop different models/algorithms which
incorporate the covariate screening method from hdPS.
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Weights of Individual Algorithms in Super Learners 1 and 2

Data Set Algorithms Selected for SL1 Weight
NOAC SL.caret.bayesglm All 0.30

SL.caret.C5.0 All 0.11
SL.caret.C5.0Tree All 0.11
SL.caret.gbm All 0.39
SL.caret.glm All 0.01
SL.caret.pda2 All 0.07
SL.caret.plr All 0.01

NSAID SL.caret.C5.0 All 0.06
SL.caret.C5.0Rules All 0.01
SL.caret.C5.0Tree All 0.06
SL.caret.ctree2 All 0.01
SL.caret.gbm All 0.52
SL.caret.glm All 0.35

VYTORIN SL.caret.gbm All 0.93
SL.caret.multinom All 0.07

Data Set Algorithms Selected for SL2 Weight
NOAC SL.caret.C5.0 screen.baseline 0.03

SL.caret.C5.0Tree screen.baseline 0.03
SL.caret.earth screen.baseline 0.05
SL.caret.gcvEarth screen.baseline 0.05
SL.caret.pda2 screen.baseline 0.02
SL.caret.rpart screen.baseline 0.04
SL.caret.rpartCost screen.baseline 0.04
SL.caret.sddaLDA screen.baseline 0.03
SL.caret.sddaQDA screen.baseline 0.03
SL.hdps.100 All 0.00
SL.hdps.350 All 0.48
SL.hdps.500 All 0.19

NSAID SL.caret.gbm screen.baseline 0.24
SL.caret.sddaLDA screen.baseline 0.03
SL.caret.sddaQDA screen.baseline 0.03
SL.hdps.100 All 0.25
SL.hdps.200 All 0.21
SL.hdps.500 All 0.01
SL.hdps.1000 All 0.23

VYTORIN SL.caret.C5.0Rules screen.baseline 0.01
SL.caret.gbm screen.baseline 0.71
SL.hdps.350 All 0.07
SL.hdps.750 All 0.04
SL.hdps.1000 All 0.17

Table 1.5: Non-zero weights of individual algorithms in Super Learners 1 and 2 across all
three data sets.
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Super Learner produces an optimal ensemble learning algorithm, i.e. a weighted combination
of the candidate learners in its library. Table 1.5 shows the weights for all the non-zero
weighted algorithms included in the optimal, data set-specific ensemble learner generated by
SL 1 and 2. We can see for all the three data sets, the gradient boosting algorithm gbm
has the highest weight. It is also interesting to note that across the different data sets the
hdPS algorithms have very different weights. Using NOAC and NSAID, the hdPS algorithm
plays a dominating role: hdPS algorithms occupy more than 50% of the weight. However
in VYTORIN, boosting still plays the most important role, with weight 0.71. This suggests
that gradient boosting and hdPS plays a significant role in the prediction of propensity
scores. In further studies of prediction/estimation of propensity scores on similar data sets,
we may first only include the algorithms with high weights if computation time is limited.
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Discussion

Data Set Method
Negative

Log
Likelihood

AUC

Negative
Log

Likelihood
(Train)

AUC
(Train)

Processing
Time

(Seconds)

NOAH k=50, n=200 0.50 0.80 0.51 0.79 19.77
k=100, n=200 0.50 0.80 0.50 0.80 20.69
k=200, n=200 0.49 0.80 0.49 0.81 22.02
k=350, n=200 0.49 0.82 0.47 0.83 25.38
k=500, n=200 0.49 0.82 0.46 0.84 27.35
k=750, n=500 0.50 0.81 0.45 0.85 50.58
k=1000, n=500 0.52 0.80 0.43 0.86 57.08

sl baseline 0.53 0.77 0.53 0.77 1035.43
sl hdps 0.48 0.82 0.47 0.83 1636.48

NSAID k=50, n=200 0.60 0.68 0.61 0.67 43.15
k=100, n=200 0.60 0.69 0.60 0.69 43.48
k=200, n=200 0.59 0.70 0.60 0.69 47.08
k=350, n=200 0.60 0.69 0.59 0.70 52.99
k=500, n=200 0.60 0.69 0.59 0.71 58.90
k=750, n=500 0.60 0.69 0.58 0.71 112.44
k=1000, n=500 0.61 0.69 0.58 0.72 119.28

sl baseline 0.61 0.67 0.61 0.66 1101.84
sl hdps 0.59 0.70 0.59 0.71 2075.05

VYTORIN k=50, n=200 0.44 0.64 0.43 0.64 113.45
k=100, n=200 0.43 0.65 0.43 0.65 116.73
k=200, n=200 0.43 0.65 0.43 0.66 146.81
k=350, n=200 0.43 0.65 0.42 0.67 166.18
k=500, n=200 0.43 0.65 0.42 0.67 189.18
k=750, n=500 0.43 0.65 0.42 0.68 315.22
k=1000, n=500 0.43 0.65 0.42 0.68 350.45

sl baseline 0.42 0.69 0.42 0.70 9165.93
sl hdps 0.42 0.70 0.41 0.71 15743.89

Table 1.6: Perfomance for hdPS and SL

Tuning Parameters for hdPS Screening Method

The screening process of hdPS needs to be cross-validated in the same step as its predictive
algorithm. For this study, the computation is too expensive for this procedure, so there is
an additional risk of overfitting due to the selection of hdPS covariates. A solution would
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be to generate various hdPS covariate sets under different hdPS hyper parameters and fit
the machine learning algorithms on each covariate set. Then, SL3 would find the optimal
ensemble among all the hdPS covariate set/learning algorithm combinations.

Performance of hdPS

Although hdPS it is a simple logistic algorithm, it wisely takes advantage of extra information
from claims data set. It is therefore reasonable that hdPS outperforms most algorithms in
most cases. Processing time for hdPS is sensitive to n while less sensitive of k (see 1.2. The
performance is, however, not sensitive to either n or k (see 1.6). Therefore, Super Learners
which include hdPS may save processing time by including only a limited selection of hdPS
algorithms without sacrificing performance.

Risk of overfitting for hdPS
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Figure 1.5: AUC for hdPS algorithms with different number of variables, k.
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Figure 1.6: Negative loglikelihood for hdPS algorithms with different number of variables,
k.

The hdPS algorithm utilizes many more features than traditional methods, which may raise
the risk of overfitting. The performance table (table 1.6) shows the negative loglikelihood
for both training set and testing set. We can see the difference of performance of hdPS in
training set and test set are very small, and not sensitive to k and n. As long as we control
k and n in a resonable range, we may not need to worry about the curse of dimensionality.

To study the risk of overfitting for hdPS across each data set, we fix the propotion of
number of variable per dimension (n) and number of total hdPS variables (k), then increase
k to see the performance of hdPS algorithms. The green lines represent performnce over the
training sets and red lines represent peformance over the test sets.

From figure 1.5, we see that increasing the number of variables in hdPS, results in an
increase in AUC in the training sets. This is deterministically a result of increasing model
complexity. To mitigate this effect, we look at the AUC over the test sets to determine if
model complexity reduces performance. For both n/k = 0.2 and n/k = 0.4, AUC in the
testing sets is fairly stable for k < 500, but for larger values of k begins to decrease. We find
then, that hdPS is only sensitive to overfitting for k > 500.

Similarly, in figure 1.6, the negative log-likelihood decreases as k gets larger. The negative
log-likelihood in the testing sets begins to increase only for k > 500, similary to what we
found for AUC. Thus, we conclude the negative log-likelihood is also not sensitive to k for
k < 500.

Due to the large sample sizes of our datasets, the binary nature of the claims code
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covariates, and the sparsity of hdPS variables, these hdPS algorithms are at less of a risk of
overfitting. However, the high dimensionality data may lead to -some computation issues.

Penalized hdPS

0.45

0.50

0.55

0.60

noac_bleed nsaid vytorin_combined
data set

ne
ga

tiv
e 

lo
g−

lik
el

ih
oo

d

Regular hdPS

0.45

0.50

0.55

0.60

noac_bleed nsaid vytorin_combined
data set

ne
ga

tiv
e 

lo
g−

lik
el

ih
oo

d

L−1 penalized hdPS

0.65

0.70

0.75

0.80

noac_bleed nsaid vytorin_combined
data set

A
U

C

Regular hdPS

0.65

0.70

0.75

0.80

noac_bleed nsaid vytorin_combined
data set

A
U

C

L−1 penalized hdPS

Figure 1.7: Unregularized hdPS Compared with Regularized hdPS

The hdPS algorithm uses multivariate logistic regression for its estimation. We compared
the performance of this algorithm against that of regularized regression by implementing
the estimation step using the cv.glmnet method in glmnet [12] package in R, which uses
cross-validation to find the best tunin parameter λ.

To study if regularization can decrease the risk of overfitting for hdPS, we use L − 1
regularization (LASSO) for the logistic regression step in hdPS. For every regular hdPS we
used cross-validation to find out the best tunning parameter based on discrete Super Learner.

Figure 1.7 shows the negative log-likelihood and AUC over the test sets for unregularized
hdPS (left) and regularized hdPS (right). We can see that using regularization can increase
performance slightly. In this study, the sample size is relatively large. The regularization
does not help a lot. However, when dealing with smaller data set, it is highly suggested
to use regularized regression for the last step of hdPS algorithmm, or first generate hdPS
covariates and then use Super Learner (as the idea of SL3).
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Predictive Performance for SL

SL is a weighted linear combination of candidate learner algorithms that has been demon-
strated to perform asymptotically at least as well as the best choice among the library of
candidate algorithms, whether or not the library contains a correctly specified parametric
statistical model. The results in previous sections show the performance of SL in a finite
data set.

From the previous sections, we found that among algorithms which only utilize baseline
variables, SL always outperforms the best candidate in its library. Also with respect to the
prediction of propensity scores:

• Super Learner reliably outperforms candidate algorithms in AUC, even though the
model selection step in SL minimizes a different performance criterion: the cross-
validated negative log-likelihoood.

• The hdPS screening method offers a simple way to utilize the information from claims
data which increases estimation performance significantly. It is therefore reasonable to
take advantage of hdPS covariates in Super Learner.

Data-adaptive property of SL

Besides the outstanding estimation performance, there are several other reasons to use Super
Learner for the estimation of propensity scores: First, esimating the propensity score using
a parametric model requires accepting strong assumptions concerning the functional form
of the relationship between treatment allocation and the covariates, while propensity score
model misspecification may result in significant bias in the treatment effect estimate [31, 6].
Second, the relative performance of different algorithms relies heavily on the underlying data
generate distribution. Therefore, to avoid model misspecification, we must try many models.
This paper clearly demonstrates the strength of this approach: some algorithms perform well
over several data sets, but not always. Including many different types of algorithms in the
SL library accommodates this inevitability. Cross-validation helps us avoid the risk of over
fitting, and so we may include as many algorithms as we can, if the computation consumption
permits.

To summarize:

• From figure 1.5, the Gradient Boosting and hdPS have the dominating weight in all
three data sets. Hence they are two most powerful individual algorithms for prediction
of propensity scores in these three data sets. We may include them first if computation
resource is limited.

• The optimal learner for prediction will highly depend on the underlying data-generating
distribution: one model may succed in one case, while may fail in another data set.
Therefore it is reasonable to use SL including as many competing algorithms as possible.
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Conclusion

This article demonstrates the practical performance of Super Learner in finite sample sets for
a specific prediction problem (propensity score prediction). The outstanding performances
for both negative log-likelihood and AUC demonstrate the reliability of the performance
of Super Learner. Based on the cross-validation procedure, SL can adaptively combine a
number of different estimators with non-negative weights while avoiding overfitting.

One of the advantages of Super Learner is how easily it can adopt the strengths of field-
specific algorithms. The Super Learner framework allows a researcher to try many prediction
algorithms, including models based on a priori knowledge about the variables, knowing that
the final combined Super Learner estimates will either be the best fit or near the best fit
[26]. In this paper we successfully implemented SL utilizing the hdPS algorithm to predict
propensity scores and achieved optimal performance.
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Chapter 2

Online Super Learner for Online
Adversarial Prediction

Introduction

Ensemble learning methods train several baseline models, and use some techniques to com-
bine them together to make prediction. The ensemble learning methods have gained popular-
ity because their superior prediction performance. Consider an off-line case with some fixed
data generating mechanism. The performance of a particular learner depends on how effec-
tive its searching strategy is in approximating the optimal predictor defined by the true data
generating distribution [21]. Thus, the relative performance of various learners will depend
on the true data-generating distribution, models’ assumptions, and their bias variance trade
off. However, it is generally impossible to know a priori which learner would perform best
given the data and prediction problem. One widely used method is to use cross-validation
to give an ’objective’ assessment of the learners, and then find the optimal convex combi-
nation minimizing the cross-validated risk. [39, 5] proposed a linear combination strategy
called stacking to ensemble the models, and [21] proposed cross-validation based optimiza-
tion framework called Super Learner to determine the best weight for each candidate learner.
In this article we extend this off-line cross-validation based ensemble method to the online
setting.

General Online Learning and Optimization

In an online convex optimization problem a decision-maker makes a sequence of decisions,
i.e., chooses a sequence of points in Euclidean space, from a fixed feasible set. After each
point is chosen, it encounters a sequence of (possibly unrelated) convex cost functions [17].
Consider a repeated game with decision method plays at ∈ A, and world reveals loss lt ∈ L.

• A: a convex subset of Rd

• L: set of convex real functions on A
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At time t:

• Player chooses an action at from A

• Adversary chooses lt : A → R from L

• Player incurs loss lt(at)

To make the idea of loss more concrete in the online prediction setting, we think we first
define a fixed loss function l. Then define lt(a) = l(a, yt), which depends on the ’outcome’ yt
at round t. In other words, at each round, the adversary select an outcome y. In this study,
at is the weight for each predictor, with A be the probability simplex. Consider we have m
single algorithms, with n rounds. We define online cumulative loss as:

L̂n =
n∑
i=1

lt(at)

Instead of minimizing the online loss itself, we consider a strategy to minimize the regret:

regret =
n∑
t=1

lt(at)−
n∑
t=1

lt(a)

In other words, we aim to minimize regret, that is, perform well compared to the best
(in retrospect) from some class. For simplicity, we define L∗n = mina∈A

∑n
t=1 lt(a).

Notice we do not make any assumptions about the ’data generating mechanism’ in online
setting. Instead, the adversarial loss (or outcome yt in the classification setting) could be
determined after we make the action at, to maximize the regret. Thus we could consider it
as an adversarial prediction problem.

Super Learner and Online Super Learner

Stacking and Super Learner

Consider the prediction task in offline setting. The main idea in stacking is to ’stack’ the
predictions f1, · · · , fm by linear combination with weight ai:

fstacking =
m∑
i=1

aifi

The idea of ensemble learning, which combines predictors instead of selecting single pre-
dictors, is well studied in the statistics. [5] summarized and referred many related literatures
[27, 9, 32, 3, 14] about the ensemble of predictors. Recently, two widely used ensemble tech-
niques are bagging [4] and boosting [11, 10, 13]. The bagging uses bootstrap aggregation to
reduce the variance for the strong learners, while the boosting techniques ’boost’ the learning
ability for the weak learners.
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The idea of stacking originated by [39], which argues the stacking works by deducing
the biases of the generalizer(s) with respect to a provided learning set. [5] also studied
the stacked regression by using cross-validation to construct the ’good’ combination. [21]
proposed a general framework called super learner by minimizing cross-validated risk for
the combination, and showed its finite sample and asymptotics properties. Literatures show
its application to wide range of topics, e.g. survival analysis [18], clinical trial [35], and
mortality prediction [25].

For simplicity, we consider the binary classification task, which could be easily generalized
to multiclass classification and regression. We first study a simple version of offline super
learner with m single classification algorithms, using negative log-likelihood as loss function.
It ensemble the base learners by V -fold cross-validation:

RCV =
V∑
v=1

∑
i∈val(v)

l(yi,p
−v
i , a)

where val(v) is the index for the observations in the v-th fold, and p−vi is defined as the
predictions from the i-th base learner that trained with all the data except the v-th fold.
There are many options for the loss function. For example, consiger negative log likelihood
loss: l(yi,pi, a) = −(yi log(pi · a) + (1− yi) log(1− pi · a)), with constrain a on a probability
simplex:

||a||1 = 1, ai ≥ 0, for i = 1, · · · ,m

Online Super Learner

Consider an online adversarial classification problem (e.g. spam detection): Consider a re-
peated game: every round world first reveals some input covariates Xt, m baseline algorithms
gives predition of outcome pt = (pt1, · · · , ptm), online Super Learner computes the weight
for ensemble: at ∈ A, and world reveals the outcome yt. At time t:

• There are m base learners (they could be either pre-trained algorithm, or online algo-
rithm like online SVM and online boosting). The i-th algorithm gives the prediction
pti for the probability for outcome to be 1, based on the input covariates Xt.

• Players choose some strategy to give a estimated probability based on the predicted
probability pt from m base learners by convex combination with weight at. See more
details in the later sections.

• Adversary chooses the true outcome, yt, and therefore the current online loss incurred
is lt = l(yt, at,pt) : A → R from L, where l could be 0-1 loss, or some surrogate loss.

• Player incurs loss lt(at)
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Online Super Learner with negative log likelihood loss could be considered as an online
convex optimization problem. Consider at each rount t, we have m predictors pt,1, · · · pt,m
(could be considered as the prediction from m online classifiaction algorithm, or experts).
We want to find a weight on a probalisitc simplex (|a|1 = 1 with ai ≥ 0) for each prediction
algorithms to minimize the regret:

regret =
n∑
i=1

(l(at,pt, yt))−
n∑
i=1

(l(a,pt, yt))

where l(a,pt, yt) is a loss function. Aforementioned, we focus on the binary classification,
and l(a,pt, yt) is the negative log likelihood for Super Learner prediction:

l(a,pt, yt) = yt log(a · pt) + (1− yt) log(1− a · pt)

It could be solved by online regularized convex optimization using mirror descent. Also
the constrain of a could be achieved by Bregman projection or Lazy projection at each step.
The bounded domain for a and bounded gradient of loss function guarantee the online regret
could be upper bounded with order O(

√
n) w.r.t. the number of iterations.

Other Notations

We start by establishing the notation used throughout the paper. In this paper, we focus on
the binary classification. Without any specification, we assume y ∈ {0, 1} and ỹ ∈ {−1, 1}.
We use bold face letters (e.g. a) to define a vector, and standard lower case letters to define
a scalar (e.g. y). The dot product of bold characters are the dot product of two vectors:
a · p =

∑m
i=1 aipi. If with no extra specification, || · || stands for the Euclidean norm || · ||2.

∇f(a) is the gradient for the function f at point a, while ∂f(a) denotes the subgradient
for the function f at point a.

We define logit function as logit(t) = ln( p
1−p) and expit function as expit(t) = logit−1(t) =

exp(t)
1+exp(t)

.

Simple Linear Super Learner with Negative

Log-Likelihood Loss

Solve Linear Online Super Learner by Mirror Descent

One potential way to solve online super learner is update the weight a by minimizing the
sum of previous loss:

at+1 = arg min
a∈A

(
t∑

s=1

l(a,ps, ys))
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This method uses the idea of ’follow the leader’. It could be useful if the loss function
have good property (e.g. strongly convex), or we have strong assumption of the single learner
and the data streaming generating system. However, in online setting, it has been proved
that the adversary could choose adversarial data that makes ’follow the leader’ strategy fail
(with order O(n) regret).

To solve the original online convex optimization, consider a regularized minimization
approach:

at+1 = arg min
a∈A

(η
t∑

s=1

l(a,ps, ys) +R(a))

where R is some regularization to make the sequence stable. Different regularization
leads to different online procedure. The solution to the regularized optimization could be
computed by mirror descent. In this study, we define R(a) as l− 2 regularization 1

2
||a||22. To

minimize
This is a typical constrained online convex optimization problem. We could solve this by

mirror descent:

Algorithm 1 Online Mirror Descent for Convex Loss

1: Define the link function g(θ) = arg mina∈A(η〈a, θ〉+R(a))
2: Initialize a = ( 1

m
, · · · , 1

m
)

3: for each round t do
4: Predict with at = g(θt)
5: Update θt+1 = θt + zt, where zt ∈ ∂ft(wt)
6: end for

As we take l − 2 regularization in this case, we have g(θ) = η · θ. Thus in unconstrained
case with l − 2 regularization, we could just take online gradient descent:

ãt+1 = ãt − ηgt
Then we consider the constrain: we want a lies on the probability simplex, which means

we constrain a with ||a||1 = 1 and ai ≥ 0. This constrain could be achieved by Bregman
projection:

Theorem 1. [34]
For constrained constrained minimization is equivalent to unconstrained minimization,

followed by Bregman projection

at+1 = arg min
a∈A

Φt(a)

ãt+1 = arg min
a∈Rm

Φt(a)
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then the constrained solution equals to the Bregman projection of the unconstrained solu-
tion:

at+1 = ΠΦt
A ãt+1

Thus we could solve the constrained regularized online convex optimization by online
gradient descent and then take Bregman projection at each step. For l − 2 regularization
and negative log-likelihood loss, the projection is:

ΠΦt
A (ãt+1) = arg min

a∈A
Φt(a)− (Φt(b) +∇Φt(b)(a− b))

As the loss function is nonlinear, the projection would be complex and slow. We could
sidestep this by ’lazy projection’: we use l− 2 projection instead of the Bregman projection
with respect to the loss. Euclidean projection on l − 1 ball could solved efficiently by fast
algorithm proposed by [7] in O(m) expected time. In addition, we would show by lazy
projection, we could still achieve good regret bound.

Here is the pseudo code for the online super learner with negative log likelihood loss:

Algorithm 2 Online Linear Super Learner solved by Gradient Descent

1: for each round t do
2: Compute the current gradient: ∇lt(a) = yt

pt

a·pt
+ (1− yt)( −pt

1−apt
)

3: Update combination weight ãt+1 − η∇lt(a)
4: l − 2 project ãt+1 onto the l − 1 unit ball: at+1 = ΠAãt+1

5: end for

Theorem 2. The regret of this online super learner solved by online gradient descent is
upper bounded by

L̂n − L∗n ≤
2
√
nm

γ

Proof. To prove the theorem 2, we first introduce the following theorem:

Theorem 3. [40] For G = maxt ||∇lt(at)|| and D = diam(A), the gradient strategy with
η = D/(G

√
n) and lazy projection has regret satisfying:

L̂n − L∗n ≤ GD
√
n

We want to bound the Euclidean norm of the gradient as well as the diameter of A. First
as A = {||a||1 = 1, ai ≥ 0, for i = 1, · · · ,m}, for any a ∈ A, we have ||a||2 ≤ 1. Thus D = 2.

To give an upper bound for the regret, we need extra assumption to bound pt,i

Assumption 1. Positivity: We assume all the predicted probability from the online clas-
sifiers are bounded awary from 0 and 1. In other words, for any input X, the predicted
probability would be within [γ, 1− γ] for some small constant γ.
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Notice this might not true, but in practice we could trim the predicted probability by
[γ, 1 − γ] to make the gradient within a reasonable range. Thus the Euclidean norm of
gradient is bounded by:

With such assumption the gradient at round t is ∇lt(at) = yt
pt

a·pt
+ (1 − yt)( −pt

1−a·pt
), we

have maxt ||∇lt(at)||2 ≤ ||( 1
γ
, · · · , 1

γ
)||2 =

√
m
γ

.

Take D = 2, G =
√
m into Theorem 3, we get the upper bound for the regret for the log

likelihood loss is 2
√
nm
γ

.

Solve Linear Online Super Learner by Second Order Method with Logarithmic
Regret

Hazan et al.[17] proposed several methods that achieve logarithmic regret bound. To achieve
logarithmic bound for online gradient descent, we need strong assumption for the loss func-
tion: lt must be H-strong convex. This is not easy to achieve in online prediction. They
also proposed an online Newton method, which only requires a mild condition that the loss
function is α-exp-concave.

Definition 1. If there is an α > 0 such that exp(−αlt(a)) is a concave function for a ∈ A,
for all t:

∀a ∈ A, t ∈ [n],∇2[exp(−αlt(a))] ≺ 0

We call such class of cost functions satisfy the α-exp-concavity.

Algorithm 3 Online Newton Method [17]

1: Use any arbitrary point ai ∈ A
2: Define β = 1

2
min( 1

4GD
, α) and ε = 1

B2D2 , ∇t = ∇lt(at)and At =
∑t

i=1∇t∇T
t + εIn

3: for each round t do
4: ãt+1 = xt−1 − 1

β
A−1
t1 ∇t1

5: Project ãt+1 onto A: at+1 = ΠAt−1
A ãt+1

6: where ΠAt−1
A is defined by ΠAt−1

A (ã) = arg mina∈A(a− ã)At−1(a− ã)
7: end for

Theorem 4. [17] Assume that for all t, the loss function lt is α-exp-concave, with diam(A) ≤
D and ||∇l(x)|| ≤ G, the algorithm Online Newton Step has the following bound:

regret ≤ 5(
1

α
+GD)m log(n)

For simplicity, we assume ỹ = 2y− 1. We could write the negative log likelihood loss for
the linear super learner as the logistic loss: lt(a) = log(1+e−ỹt(pt·a− 1

2
)). It achieves minimum
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when ỹt(2pt · a − 1) = 1, which means yt · a matches ỹt perfectly. It can be easily verified
that

∇lt(a) =
−1

1 + eỹt(pta− 1
2

)
ỹtpt

∇2lt(a) =
1

2 + eỹt(pta− 1
2

) + e−ỹt(pta− 1
2

)
pt · pt

T

Thus, G := sup||∇lt(a)||2 ≤
√
m

1+ 1√
2

. And ∇2lt(a) is a positive semi-definitive matrix,

which implies that lt(a) is a convex function. Moreover, suppose gt(a) = exp(−αlt) =

(1 + e−ỹt(pt·a− 1
2

))−α. A few calculations lead to

∇g(a) = α(1 + e−ỹt(pt·a− 1
2

))−(α+1) · e−ỹt(pt·a− 1
2

)ỹtpt

∇2g(a) =

(
α + 1

1 + eỹt(pt·a− 1
2

)
− 1

)
α(1 + e−ỹt(pt·a− 1

2
))−(α+1)e−ỹt(pt·a− 1

2
)pt · pt

T

g(a) is a concave function⇔∇2g(a) is a negative semi-definitive matrix⇔
(

α+1

1+eỹt(pt·a− 1
2 )
− 1
)
≤

0. It can be guaranteed when α ≤ 1√
e
. To apply this loss function to Algorithm 3, according

to [17], we set can G =
√
m

1+ 1√
2

, D =
√

2, α = 1√
e
. Thus we have:

regret ≤ 5(
√
e+
√

2

√
m

1 + 1√
2

)m log(n)

Non-linear Extension of the Simple Super Learner:

Deeper Ensemble

We showed simple super learner with the predicted probabilities from single algorithms could
be solved in online mode by online mirror descent or online Newton method, with non-trivial
regret upper bounded. However, this in practice does not outperform much compared to
other ensemble method like online bagging, or exponential weight strategy (multiple expert
advice). We could improve this algorithm by ’stacking’ the algorithms in deeper level: We
first use logit function to transform the original predicted probabilities, then find a ’good’
convex combination, and then apply expit transformation to [0, 1] scale. In the batch mode,
the combination weight could be computed based on cross-validation:

RCV (a) =
V∑
v=1

∑
i∈val(v)

ln(y · expit(logit(pvi )a) + (1− y)(1− expit(logit(pvi )a)))

Consider a transformed outcome ỹ ∈ {−1, 1} by ỹ = 2y − 1, this equals the loss for
logistic regression:
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RCV (a) =
V∑
v=1

∑
i∈val(v)

ln(1 + exp(−ỹi(logit(p)a)))

Easy to check this loss is convex with respect to the weight a. For the online mode, the
loss is no longer linear, thus we could not use regularized online optimization with mirror
descent to solve it. However, as it is convex, we could still achieve an upper bound for the
regret under some assumption.

Define zt+1 = ỹt+1logit(pt+1at), then the gradient of the loss is:

∂lt+1

∂ai
= − exp(−zt+1)

1 + exp(−zt+1)
· ỹ · logit(pt+1[i])

Due to Assumption 1 for the predicted probability, we have:

||∇lt|| ≤ −
√
m · logit(γ)

Here we do not have restriction of the weight a, but to achieve the theoretical upper
bound for the regret, we still could impose restriction on A. For example, we could restrict
A be a non-negative Euclidean ball with diameter D. Take these into theorem 3, we could
get the upper bound for this deeper non-linear super learner:

regret ≤ −logit(γ)D
√
nm

However, this bound could be very large if γ is small.
Here is the pseudo code for the extension of simple online super learner:

Algorithm 4 Online Non-Linear Super Learner solved by Gradient Descent

1: for each round t do
2: Compute the current gradient: ∇lt(a) = − exp(−zt)

1+exp(−zt) · ỹ · logit(pi)
3: Update combination weight ãt+1 −∇lt(a)
4: l − 2 project ãt+1 onto A: at+1 = ΠAãt+1

5: end for

Experiments

Other Competitors

Exponential Weight Strategy

The first version of online super learner is simple and interpretable. Howeber, it does not
work well on the data set. In comparison, the second (linear and solved by online Newton
method) and third version of super learner (non-linear and solved by gradient descent)
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perform much better in our empirical studies. In this section, we compare the two versions
of online super learner with several well-known competitors.

First consider exponential weight strategy:

Algorithm 5 Exponential weight strategy

1: Consider each single algorithm is a expert with prediction et,i at round t
2: Choose at as the normalized vector wt

||wt||1 and

3: Maintain a set of unnormalized weight over experts: wi1 = 1, wit+1 = witexp(−ηlt(ei)),
where η is a parameter of the algorithm and lt(ei) is loss incurred by expert i

4: Choosing the prediction from one expert randomly, according to the distribution at

Theorem 5. [34] The exponential weights strategy with parameter

η =

√
8 ln(m)

n

has regret satisfying

L̂n − L∗n ≤
√
n ln(m)

2

In this study, we use two kinds of loss for the online prediction: the first is the negative
log likelihood, and the second is 0-1 loss. Though the regrets for both of them could be
bounded by order O(

√
n), the loss functions are different. We will study the difference of

the performance in later section.

Online Bagging

We also compare the online super learner to the online bagging algorithm [23]. The idea of
online bagging is to mimic bootstrap by generating Poisson random variables:

Algorithm 6 Online Bagging

1: for Each round t do
2: Compute the current predictions from single algorithms, and take average of them

as bagging prediction
3: for Each i-th single algorithm do
4: Generate a Poisson random variable kt,i
5: Train the i-th single online algorithm kt,i times
6: end for
7: end for

Though there is no theoretical result about the bound for the regret about the online
bagging, empirical studies shows it works well in online prediction.
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Limitation of the Experiment

The number online classification algorithms is limited compared with off-line prediction
algorithms. For similicity, we only consider the online linear models with different parametric
formula solved by gradient descent as the single algorithm. Then we assess the performance
of the each ensemble method as well as the best parametric model in each case.

Ensemble Models Description

In the later sections, we refer ’super learner 1’ as the algorithm 4, ’super learner 2’ as the
linear super learner with logistic loss solved by online Newton steps (algorithm 3). We
slightly modify exponential weight with cross-entropy loss by solving it use Newton method
instead of gradient and we call it 2rd order exp weight. We refer online bagging as the
algorithm 6. ’exp weight 1’ and ’exp weight 2’ are the algorithm 5 with cross-entropy loss
and 0-1 loss, respectively.

Simulation

In the simulation study, we consider four simulation cases to mimic the real world data
generation mechanism. In the first two simulation, data are generated i.i.d. from a fixed
data generating system.

For simulation 1, we have

P (Yt = 1) = expit(1 +X1 − 2X2 +X3 − 2.5X4)

And each parametric learners are main term logistic regression on two of the covariates.
This mimic the senario that each base learner only have the partial information. Intuitively,
the linear model with X2, X4 will be in favor as the coefficient for them are larger.

For simulation 2, we have:

P (Yt = 1) = expit(1 +X1 − 2X2 +X3 − 2.5X4 + 2 sin(X1))

The base learners are 1. main term for all covariates. 2. second order interaction for all
covariates. 3. Second order interaction for all pairs of three covariates. In this case, models
are flexible, but true function is not in the model space.

For simulation 3 and 4, we consider there is a change point in the data streaming. In
other words,

P (Yt = 1) = expit(1 +X1 − 2X2 +X3) for t = 1, · · · , 2500

P (Yt = 1) = expit(1− 2X2 +X3 − 2.5X4) for t = 2501, · · · , 5000

The base learner are slightly different. For simulation 3, we use the same idea as simu-
lation 1 by setting all the base learners with two covariates. For simulation 4, we consider
candidates with more complex parametric formula.
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For all the simulations, the sample size for online data stream is 5000. Also we use 500
extra data as ’historical’ data to initialize each single learner.
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Figure 2.1: Online cross entropy loss and error for simulation 1
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Figure 2.2: Online cross entropy loss and error for simulation 2

Figure 2.1 and 2.2 show the online loss (negative log likelihood) and error for each en-
semble algorithms. With extra power from nonlinearity, super learner 1 outperforms other
algorithms significantly with respect to the negative log likelihood. Though it still have
best performance with respect to error, the difference is small. This might suggest in prac-
tice, outstanding performance w.r.t. the surrogate loss is a good criterion, but not always
guarantee the error rate.
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Table 2.1: Cross-entropy and error rate for 6 ensemble methods and the best single algorithm
for 4 simulations

Simulation Loss super learner 1 super learner 2 2rd order exp weight bagging exp weight 1 exp weight 2 Best Baseline
1 Cross-entropy 1818.964 2395.625 2265.373 2319.478 2121.994 2121.286 2131.095

Error rate 0.173 0.18 0.1766 0.1766 0.1952 0.1938 0.196
2 Cross-entropy 1474.773 1706.039 1538.267 1625.915 1477.748 1482.17 1482.018

Error rate 0.1316 0.1340 0.1324 0.1318 0.1318 0.1328 0.1332
3 Cross-entropy 2461.748 2777.04 2660.266 2711.715 2523.297 2554.554 2557.132

Error rate 0.2466 0.279 0.2578 0.2638 0.2454 0.2472 0.2554
4 Cross-entropy 2513.693 2557.248 2589.645 2572.772 2618.957 2775.929 2614.527

Error rate 0.2568 0.2546 0.2532 0.2542 0.2454 0.2544 0.2492

Table 2.1 shows the online risk for 6 ensemble methods. As we run all the model with
same data, L∗ would be same. Thus we could directly compare online risk L̂n in stead of
regret. Online bagging shows good performance in simulation 4 while bad performance in
3. This is because of the property of the base learner: in simulation 4, base learners are
strong learners, thus use averaging could reduce the variance. However, when the learners
are weak, averaging models would not make much difference. This suggest data adaptive
weight for the models is necessary in online setting.

We could see the nonlinear super learner achieves satisfactory performance. Though the
difference for the error rate is small, the cross entropy loss is smaller than other algorithms
across all simulations. This might suggest the nonlinear transformation for the input pt is
necessary.

Data Description

We use several data sets from UCI machine learning repository [22] and Knowledge Extrac-
tion based on Evolutionary Learning (KEEL) data repository [2, 1] and LIBSVM data set
[19]. Due to the limitation of the base algorithm, we select the data sets with number of
features from 2 to 20.

Table 2.2: Sample size and number of features for each dataset

data Total size Number of features
svmguide1 7089 4
banana 5300 2
titanic 2201 3
magic 19020 10
phoneme 5404 5
ring 7400 20

We compare the performance of the ensemble methods from two perspectives: first we
compare the online loss for each ensemble method. We also split 20% of each data set
as testing set, and make prediction on the testing set. We record the online and offline
performance for each ensemble method.
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Table 2.3: Error rate for online and offline prediction for all the ensemble methods, as well
as the best single algorithm

data super learner 1 super learner 2 2rd order exp weight online bagging exp weight 1 exp weight 2 Best Baseline
svmguide1 online error rate 0.0612 0.0672 0.0595 0.0599 0.0643 0.0665 0.0630

offline testing error rate 0.0439 0.0464 0.0450 0.0406 0.0561 0.0567 0.0558
banana online error rate 0.462 0.471 0.472 0.470 0.472 0.461 0.450

offline testing error rate 0.448 0.462 0.466 0.463 0.467 0.448 0.449
titanic online error rate 0.229 0.223 0.225 0.226 0.227 0.221 0.209

offline testing error rate 0.224 0.216 0.217 0.217 0.217 0.209 0.209
magic online error rate 0.294 0.307 0.312 0.323 0.311 0.311 0.310

offline testing error rate 0.322 0.256 0.272 0.347 0.268 0.267 0.251
phoneme online error rate 0.231 0.245 0.244 0.245 0.243 0.247 0.231

offline testing error rate 0.226 0.242 0.239 0.241 0.229 0.238 0.227
ring online error rate 0.335 0.345 0.339 0.339 0.507 0.350 0.350

offline testing error rate 0.329 0.367 0.322 0.322 0.501 0.334 0.339

Table 2.3 shows the prediction error (0-1 error) for both online and offline prediction
from each online ensemble method across all datasets.

Discussion and Future Works

From table 2.3, we could see the performance of super learner 1 is satisfactory, no matter
in online or offline setting. It is slightly better compared with super learner 2, which uses
linear combination of predictor and online Newton steps. This might because the linear
combination is too simple to construct a complex hypothesis from base learners. Further
more, the online Newton steps might focus on adversarial case and thus too conservative in
general prediction setting.

In addition, we notice in the ring data set, the error for exp weight 1 is significantly large.
This might because the regret is optimized with respect to the negative log likelihood: even
if this regret is small, the regret for error might be large.

Due to the limitation of time, we do not offer details of the comparison of nonlinear Super
Learner solved by Newton method and linear super learner solved by gradient descent. More
comparison of the different level of ensemble and solving strategy need to be studied. In
addition, the base learner in the library for online super learner is limited in this study.
Different algorithm candidates might influence the performance of the ensemble method.
Also more adversarial data examples could be studied. We leave this as the future work.

Conclusion

In this study, we proposed an online version of super learner. It could be solved by online
gradient descent, or online Newton steps, with O(

√
n) and O(log(n)) upper bound for regret,

respectively. For online Newton steps, we proposed a new online projection algorithm to
accelerate the projection step. Then we develop a deeper super learner by ensemble all
the predictors in the logit level. The performance of the online super learner algorithms is
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assessed on the four simulations and 6 real data sets. We also discuss the limitation of the
experiment and leave some future work.
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